

Integrating hazards for forest management and planning in Norway Olalla Díaz-Yáñez, Blas Mola-Yudego, Jose Ramón González-Olabarria, Timo Pukkala olalladiaz@uef.fi / olalladiaz.net / @olalla

BIOECONOMY RESEARCH

Forest ecology

Natural disturbances

Economy

Characterization

Other on-going work

amage occurrence

Time

2014

Snow and wind present a decreasing pattern

Time

Snow Wind Browsing Insect Fungus

Snow

Wind

Fungus

Browsing

Stands with ungulate browsing have higher damage mean

Region

Fungus

Stand vulnerability to browsing damage: Method

Under-sampling of the majority class

Classification trees

ι₂

 \mathbf{x}_{2}

Mean estimated variable importance

50 models

Age Development class Basal area Stand size Density Diameter Altitude Previous treatment Gini Pine percentage Slope Height Site index Dominant specie Population on stand edge Crown cover Soil depth Slope orientation Spruce percentage Steepness Shannon Decidious percentage Distance to stand edge Birch percentage Slope longitude Relief Conifer percentage Soil type

Variables describing composition, site or management are helpful to evaluate vulnerability to browsing damage

Age Development class Basal area Stand size Density

Variables describing composition, site or management are helpful to evaluate vulnerability to browsing damage

Age Development class Basal area Stand size Density

Mixed

High tree density decreases the probability of browsing damage occurrence

Age Development class Basal area Stand size Density

Low density

<1400 trees ha ⁻¹

Stand size did not indicate a clear predictive effect

Age Development class Basal area Stand size Density

Large stands >1 ha, 1-2 ha, 2-5 ha, >5 ha

Small stands <0.2 ha, 0.2-0.5 ha, 0.5-1 ha

No damaged

Damaged

Boosted Regression Trees (BRT)

Regression tree

╋

Boosting method

Boosted Regression Trees (BRT)

1-The tree that best reduces the loss function Data

l° tree Residues

Boosted Regression Trees (BRT)

Boosted Regression Trees (BRT)

Boosted Regression Trees (BRT)

92 models (750 models)

Snow and wind damage occurrence: Methods

The main variables associated to damage occurrence are consistent across all the models

Altitude and latitude did not affect equally all the species

Height and diameter are the most important forest condition variables in all the occurrence models

Marginal effect on logit (p)

Height and diameter are the most important forest condition variables in all the occurrence models

Spruce

Predicted probability

Increasing slenderness did not influence the damage occurrence probability

Marginal effect on logit (p)

Increasing the stand structure heterogeneity, above 0.5, had a negative impact on the damage occurrence probability

Marginal effect on logit (p)

Step 1:

Damage occurrence

Step 2:

Damage level

Undamaged

Lower damage level

Snow and wind damage: methods

Uprooted trees

Slender trees are more prone to break than uproot

Slenderness -

Mixed

Increasing height is associated with increasing probability for a tree to be broken

	1.0	
redicted probability of damage	0.8	
	0.6	
	0.4	
	0.2	
	0.0	
		5

Increasing diameter is related with decreasing damage

Diameter (cm)

Mixed

Increasing basal area is associated with a reduction in the tree vulnerability to be damaged

Optimization: methods

STAND DYNAMICS Growth models Recruitment models Natural mortality

INITIAL STAND (young, representative, altitudes)

Deterministic Occurrence models Stochastic tree level Damage models Stochastic plot level Tree level probability Stochastic tree and plot level

STAND (+5yr)

Optimization: methods

Frequency

Younger stands with lower densities are more vulnerable to browsing damage. The stand size could represent an interesting variable to determine vulnerability

Height and diameter are the most important forest condition variables in all the models predicting damage occurrence and latitude and altitude describing the stand location

Increasing slender and tree height is associated with increasing probability for spruce trees to be **broken** in a damaged stand and increasing **basal area** reduces the damage probability.

The developed models can be use to simulate and optimize management approaches that consider the risk of wind and snow damage

Olalla Díaz-Yáñez email: olalladiaz@uef.fi web: olalladiaz.net